Магнитоспиннинг резко упрощает и удешевляет производство полимерных нановолокон
Принцип действия метода магнитоспиннинга показан на рис. 1. На вращающемся диске закреплен постоянный магнит. Рядом с диском, на строго контролируемом расстоянии от него, находится остриё шприца, а на его конце висит капелька феррожидкости — полимерного раствора с магнитными наночастицами. Скорость вращения диска регулируется в широких пределах вплоть до нескольких тысяч оборотов в минуту. Магнит притягивает капельку, и когда он проходит в непосредственной близости от острия иглы, капелька срывается и прилипает к магниту. При подходящей вязкости раствора между иглой и магнитом возникает мостик-перетяжка. Диск продолжает вращаться, расстояние между магнитом и иглой увеличивается, перетяжка вытягивается, утоньшается, но не рвется. Растворитель при этом испаряется, нить еще сильнее утоньшается и затвердевает, и в результате образуется нановолокно. Шпулька, закрепленная на противоположной стороне диска, обеспечивает непрерывную намотку волокна.
Рис. 1. Принцип магнитоспиннинга: когда магнит, закрепленный на вращающемся диске, проходит мимо капли ферромагнитной жидкости, он притягивает ее к себе, а из удлиняющейся и высыхающей перемычки получается нановолокно.
Авторы подчеркивают, что установку для магнитоспиннинга можно собрать из дешевого магнитика, простого электромотора и шприца. Этот метод позволяет не только радикально удешевить производство волокон, но и открывает университетам, промышленным предприятиям, биотехнологическим компаниям и даже обычным школам широкие возможности для экспериментов с нановолокнами без больших затрат на исследования.
Первоисточник:
Alexander Tokarev, Oleksandr Trotsenko, Ian M. Griffiths, Howard A. Stone and Sergiy Minko. Magnetospinning of Nano- and Microfibers // Advanced Materials. Published online 8 May 2015. DOI: 10.1002/adma.201500374. (http://onlinelibrary.wiley.com/wol1/doi/10.1002/adma.201500374/abstract).